T DSTHSUTION FIATEMENT B

Rpprovea 11 puouc reieasdl
. + - TPy 4
Dmm:pz:{;u Jm%tﬁi

A Practical Parameterization of 2 and 3
Degree of Freedom Rotations

F. Sebastian Grassia
May 13, 1997
CMU-CS-97-143

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper presents the RQ (Reparameterized Quaternion) parameterization for three degree of freedom
(DOF) rotations as an alternative to quaternions for the applications of differential control and dynamic
simulation. Because it requires just three Euclidean parameters instead of the four non-Euclidean parameters
of quaternions, RQ is more efficient, less difficult to incorporate into large systems, and able to make use of
Euclidean interpolants, such as cubic splines. While RQ does possess singularities in its parameter space, we
show how they can be easily avoided for the intended applications. After discussing RQ’s properties and limi-
tations when applied to interpolation and spacetime optimizations, we derive an extension to two DOF rota-
tions, and show how it can be used to model a ball-and-socket joint to a very good approximation.

DTIC QUALITY INSPECTED 4

99707

Keywords: animation, rotations, quaternions, differential control, interpolation

1 Introduction

Two primary goals in computer animation are making objects and characters move realistically and
controllably. There are many different approaches and ideologies for achieving these goals, but they must
all share a common concern: choosing a representation for the underlying degrees of freedom (DOFs) of
the objects they animate. In choosing a representation, we must consider three important factors:

o How well does it model the way the object or joint actually moves?

o How does it behave in the intended application areas? This includes numerical properties and com-
plexity of computing the necessary quantities.

o What level of complexity does it impart to the system we are building?

The objects and characters being animated today have many different kinds of DOFs, some of which
determine structural poses, and some of which specify finer, more “organic” quantities like facial expres-
sions and hair. We are concerned with the first of these two groups, which are known as rigid body
DOFs, and consist of translations and rotations. Rigid body DOF's are the primary concern of most com-
mercial keyframe animation systems, inverse kinematics algorithms, and ongoing research into dynamic
simulation and optimization.

Translations can be represented as linear functions of a set of DOF's, and are therefore straightforward
to encode, understand, and use. Rotations, however, are nonlinear functions of their DOFs, which in-
creases the complexity of algorithms needed to manipulate and control them. Further, the mathematical
space in which rotations are defined is non-Euclidean, which complicates the numerical issues involved in
using derivatives of rotational DOFs, which we must do for inverse kinematics, dynamic simulation, and
optimization.

The work presented in this paper grew out of a profound dissatisfaction with available representations
of rotations for use in our research, which entails differential control, optimization, and interpolation of
rotations in the context of human character animation. We will discuss the shortcomings of the param-
eterizations currently used in graphics in section 2. Then in section 3 we will present a new parameter-
ization for three DOF rotations that, while not without limitations, we believe represents a practical step
forward for controlling and simulating with rotations. In section 4 we demonstrate why this is so, and
also discuss the limitations of the parameterization when applied to interpolation and spacetime optimi-
zation. In section 5 we will extend the parameterization to a two DOF rotation that is useful in modeling
ball-and-socket joints, and which has few practical limitations. We also include in the appendices formu-
lae and C code for computing and differentiating with the new parameterization.

2 Background

The applications that are driving both research and industry today include inverse kinematics, dynamic
simulation, and spacetime optimization. Although these applications vary considerably in the size and
complexity of the motion problems they address, they all require the same basic functionality:

1. the ability to compute positions and orientations of points on body parts as functions of the parame-
ters

2. the existence of and the ability to compute derivatives of these positions and orientations with respect
to the parameters

3. the ability to interpolate smoothly and controllably between sequences of parameter keyframes

Regardless of the rotation parameterization and high-level problem structure, rotations are generally
converted into 3x3 or 4x4 transformation matrices as a convenient intermediary form. This gives us a
common baseline for computation across various parameterizations: we will be interested in computing a

X X
Z Z
a) initial position at 6=$=y=0 b) response to force in +Z direction
Y Y
X X
Z Z
c) response to force in +X direction d) cannot respond to this force

Figure 1: Gimbal lock in YXY Euler angles. The box can only rotate about its center, and the rotation is param-
eterized by three Euler angles (6,$,7), rotating first about the Y axis, then the X axis, then Y again (this particular
sequence is sometimes used by physicists). When all three angles are zero, the first and last rotation axes are iden-
tical, and it is impossible to rotate the box about the Z axis, no matter how great a force we apply.

rotation matrix and the partial derivatives of that rotation matrix with respect to its parameters. There-
fore, if the parameterization possesses an n element vector of DOFs v , we must be able to compute:

oR
R d —
(v) an >

where R is a 4x4 matrix and dR/dv is a 4x4xn tensor, that is, an n element vector of 4x4 matrices, each
of which is the partial derivative of R with respect to one of the n parameters in v .

Interpolating three DOF rotations is problematic because rotations are non-Euclidean, and all of the
most convenient interpolants, such as the family of cubie splines, work well only for Euclidean quantities.
A best-case scenario for a parameterization of rotations would allow us to use ordinary cubic splines for
interpolation of rotations.

Now that we know the quantities we are interested in computing, we can examine the parameteriza-
tions in use today and see why they are unsatisfactory.

2.1 Euler Angles

An Euler angle is a DOF that represents a rotation about one of the coordinate axes. There are three
distinct formulae R:, R,, and R, for computing rotation matrices, depending on which coordinate axis
the Euler angle represents. These formulae involve trig functions of the Euler angle, and, although they
are nonlinear, their partial derivatives are easy to compute.

The Euler angle is really a one DOF rotation, and in this capacity it functions well in all respects. In
practice, when we need a two or three DOF rotation, we replace R with a sequence of single DOF Euler
rotation matrices. There are several such sequences that can be used to represent a three DOF rotation,
and this in itself is problematie, since converting from one to the another is nontrivial.

This concatenation of single DOF rotations causes more serious problems because, no matter what
sequence we choose, there will always be at least one configuration (i.e. values for each of the Euler an-

gles) where the first and last axes of rotation in the sequence align, which causes two of the three partial
derivatives to become linearly dependent, resulting in a loss of a rotational degree of freedom. This situa-
tion, called gimbal lock, means that when in such a configuration, there is a direction in which we can
pull or push with infinite force and yet be unable to induce a rotation because no combination of differen-
tial change of the three Euler angles will produce any rotation in that direction. This situation is illus-
trated in Figure 1 for the sequence YXY of Euler angles, which is capable of representing any orientation,
but is gimbal locked at (0,0,0).

Interpolation of multiple DOF rotations is also a problem for Euler angles because rotations confound
axes (see [5] for more details), and Euler angles ignore this fact. When interpolating sequences of orien-
tations, the Euler angle model interpolates around each of its three axes simultaneously and independ-
ently. This shows up, especially for freely spinning objects, as strange contortions and gyrations.

In short, Euler angles are not a good model for multiple DOF rotations, because they represent such
rotations as a sequence of single DOF rotations about coordinate axes. Despite the persistent presence of
Euler angles in commercial keyframe systems, they are unsuitable for inverse kinematics, dynamic
simulation, and spacetime optimization of three DOF rotations.

2.2 Quaternions

Euler himself showed that any orientation can be achieved by a single rotation about the proper axis (in
general not one of the coordinate axes). Quaternions, as presented to the graphics community by Shoe-
make [5], can be used as an elegant implementation of this model that also produce smooth, natural-
looking interpolations of sequences of orientations. Quaternions are 4D objects that are thought of as
having a 3D-vector component and a scalar component. If the quaternion has unit length, then the scalar
component can be interpreted as the cosine of ¥4 the angle of rotation, and the vector as the axis of rota-
tion scaled by sine of ¥ the angle of rotation, i.e.

q=[in(%8) ax, cos(%6)]
where 6 is the angle of rotation and ax is a unit length axis of rotation.

The formula for computing a rotation matrix R from the unit quaternion is simple and inexpensivel, as
are the partial derivatives of R with respect to each of the four quaternion components. Further, the
partial derivatives exist and are linearly independent over the entire surface of the unit 4-sphere on
which quaternions are defined, which means that unit quaternions are free from gimbal lock when used
to control orientations.

However, this behavior does not come without a cost. A quaternion uses four parameters to represent a
three DOF rotation, which means that there is always a direction of change (i.e. partial derivative) for the
quaternion that induces a transformation that is not a rotation. This direction is, in fact, along the 4-
vector defined by the quaternion, since any change along this direction would cause the length of the
quaternion to become non-unit, and thus no longer a rotation.

Several strategies have been developed to deal with this problem. The obvious approach is to add ex-
plicit constraints that force quaternions to maintain their unit length. If the intended application sup-
ports nonlinear constraints, this can be accomplished with a single scalar constraint for each quaternion,
which forces the quaternion to maintain its unit length. While this does work for differential control and
simulation, it forces the systems of equations that such applications solve to be larger than necessary,
since we have an extra parameter and an extra constraint for each rotation.

Gleicher [3] eliminates the need for the extra constraints by building autonormalization into the for-
mula for computing R from ¢. In this scheme, g can take on any value except (0,0,0,0), and the

1 The rotation matrix M presented in [5] transforms row vectors, so is actually the transpose of the matrix
R that we desire for transforming column vectors.

components of ¢ are replaced by (analytically) normalized versions in the formulae for computing R and
its four partial derivatives. The result is that differential change in the quaternion can no longer cause it
to cease representing a rotation; however, the quaternion can still change along the direction of its length,
but doing so now has no tangible effect whatsoever. Thus for each quaternion there is a DOF that
induces no change in configuration. This is unacceptable for applications such as dynamic simulation
(and some control algorithms) that invert a quantity known as the mass matrix, because the ineffectual
DOF causes the mass matrix to become singular.

Baraff and Witkin [1] take a different approach, discarding the quaternion parameters as the basis for
differentially controlling a quaternion rotation. They reason as follows: given a current orientation repre-
sented by a quaternion g, the orientation can differentially change by acquiring an angular velocity @,
which is a 3-vector whose direction gives an axis of rotation and whose magnitude is the rate of rotation
in radians / time unit about that axis. The underlying representation for the rotation is still a
quaternion, and the formula for computing R is the same, but we no longer compute the four partial
derivatives of R wrt. ¢. Instead, we compute three matrices that specify how the orientation will change
given a differential angular velocity with components along each of the coordinate axes. This formulation
is free from gimbal lock, and is also quite efficient, since there are no extra constraints required, and the
number of “DOFs” that appear in the equations of motion is three for each rotation.

There is, however, a heavy cost in code complexity, since the number of parameters defining the
rotation (four) is different from the number of DOFs we use to control it (three). Baraff provides formulae
for computing the time derivative of a quaternion from a given angular velocity, which must be performed
before integrating the differential equations that often arise in the intended applications. To make the
most efficient use of this technique, the disparity between number of parameters and number of DOFs
must be propagated through large code segments. Furthermore, it cannot be made to work for
optimization, so its use is limited to differential control and simulation.

Recall now that in addition to derivatives, we are also interested in interpolation of orientations. The
surface of the unit 4-sphere really is the correct place to interpolate rotations, because, with antipodes
identified, it possesses the same metric and group structure as SO(3), the rotation group. Shoemake [5]
constructs spherical Bezier curves on the surface of the unit 4-sphere, and Barr et. al. [2] use optimization
techniques to solve for a series of interpolating quaternions that minimizes tangential acceleration on the
surface of the 4-sphere while satisfying angular velocity constraints at the key orientations. However,
neither technique admits an analytical closed form (which precludes altogether their use as basis funec-
tions for representing time-varying orientations), and the quantities available for controlling the shape of
the interpolation are difficult to visualize.

In summary, quaternions are quite well behaved for most possible applications, but they incur an over-
head in efficiency and/or code complexity. Furthermore, the available means of interpolation are not
easily controlled.

3 RQ Parameterization

What we would really like is a parameterization that behaves like a quaternion but is embedded in
Euclidean space such that the number of parameters equals the number of DOFs. Such a parameteriza-
tion would be simple to control and allow us to use ordinary cubic splines to interpolate rotations. This
goal is, of course, unrealizable, as it is a standard exercise in a topology text to show that SO(3) cannot be
mapped into R? without singularities, i.e. gimbal lock. Our more realistic goal is to trade off some of the
robustness of quaternions for a Euclidean embedding, trying to minimize the loss with respect to the
mathematical quantities we need to compute.

We have devised a parameterization called RQ (Reparameterized Quaternion) that meets these criteria.
RQ represents a rotation by a 3-vector v, whose direction gives the axis of rotation and whose magnitude
is the amount of rotation about that axis (in radians). There are several known methods of translating
such an axis/angle parameterization directly into a rotation matrix, such as Rodrigues’ formula and

Cayley’s parameterization [4]. However, we use quaternions as an intermediate, since they are computa-
tionally equivalent to the direct methods that possess the properties we desire, and are easier to analyze;
the formulae for computing the individual quaternion elements as functions of v are as follows:

Let
= |v| = ‘,v,v, +v,v, vy,

=|:_s_i_n_(6}{ﬁ v, cos(}{B)]

Then

There are two immediate observations to make about this parameterization. First, the quaternion will
always have unit magnitude regardless of the value of v, which means every point in RQ parameter
space represents a rotation — we need take no special measures to insure the quaternion has unit length.
Second, there seems to be a singularity in the parameter space at v=[0,0,0], since at this point 0 is zero.
However, sin(%46)/6 is an indeterminate form, which has continuous value and derivative in the limit as 8
goes to zero (in fact, it is the well-known sinc function). We can compute the value at the limit using
UHépital’s Rule, which states:

Suppose a(x) and b(x) are two functions that are continuously differentiable in the neighborhood sur-
rounding (but not including) the point d , and b(x) is nonzero in the neighborhood. Suppose further that

. P . ax _ .. al(x)
11_1’1} a(x)=0 —11_1:} b(x) If so, then: 11—‘ 1500 1213 TS
Since the conditions are met, we can use PHépital’s Rule to compute the vector part of ¢ in the limit as
0 goes to zero by differentiating with respect to 0:

q,= TSI:[(ZG)V = Ycos(46)v
This gives the expected result that v=[0,0,0] maps to the zero rotation quaternion ¢=[0,0,0,1]. Fur-
thermore, away from zero, the YHépital’s Rule formulae are numerically indistinguishable from the origi-
nal formulae out to an appreciable fraction of a radian. Therefore, as long as we keep the transition point
from using one set to the other reasonably small (say, square root of machine precision), ¢ will be a con-
tinuous function of v to within machine precision.

8.1 Derivatives

Since we are actually reparameterizing quaternions, we can compute the derivatives of R with respect
to its RQ parameters by applying the chain rule of differentiation. That is, we have R(g(v)) and wish to
compute dR/dv , which we can compute as the product:

R _OR3y
dv dq ov

Since we already know how to compute the partial derivatives dR/dg, the only new quantities we need

are the twelve partial derivatives of the quaternion with respect to its RQ parameters (here 3g/9v),

which are given in Appendix A. Additionally, Appendix C discusses the supplemental C source code for
computing R, dR/dv, and other quantities presented later in this paper.

3.2 'Tradeoffs

So far the RQ parameterization seems to fulfill all of our requirements, implementing the axis/angle
rotation model in three Euclidean parameters. Before we can discuss its application to the animation
problems we have talked about, we must be clear about what we have given up.

3.2.1 Combining Rotations

One nice feature of quaternions is that there exists a multiplication operator that can be used to com-
bine rotations. If ¢, and ¢, are unit quaternions, then the combined rotation ¢, that is the result of first
rotating by ¢, and then by ¢, can be calculated as ¢, = g,°q,, where ‘o’ represents quaternion multiplica-
tion, as defined in [5]. RQ (and any pure axis/angle parameterization) possesses no analogous operation.
We can combine two RQ vectors using any combination of binary Euclidean operators, but in no case will
the result (in general) be equivalent to combining the two rotations — to do so we would need to convert
the RQ vectors to their corresponding quaternions, perform quaternion multiplication, then convert back,
incurring several trig and one inverse trig functions.

Fortunately, this operation is typically not needed in the applications we have talked about. Rotations
are changed only by direct parameter manipulation, or incrementally, via their derivatives. When they
are combined, it is usually in the context of a transformation hierarchy, where all rotations have already
been converted into transformation matrices.

3.2.2 Singularities

For the purposes of control and simulation, the principal advantage of quaternions over Euler angles is
their freedom from gimbal lock. We already know that the RQ parameterization must have singularities,
so if it is to be useful, we must locate all singularities and show how they can be avoided at a cost that is
outweighed by the benefits of RQ.

As previously mentioned, gimbal lock is equivalent to the disappearance or loss of linear independence
of rotational derivatives. Therefore we can determine the singularities in RQ space by analytically ex-
amining the partial derivatives 9¢/dv . Doing so reveals that a singularity occurs whenever 4 is an inte-
ger multiple of 2z. Note that this does not apply to #=0 because the forms derived from ’Hépital’s Rule
are well behaved. This makes intuitive sense, since a rotation of 2z about any axis is equivalent to no
rotation at all — the entire shell of points 27 distant from the origin (and 47, efc.) collapses to the identity
in SO(3). This singularity manifests itself in the following way: whenever 1v| =27, differentially chang-
ing v along its own axis induces continued rotation about v, but differential movement in any direction
perpendicular to v induces a velocity for v in the tangent plane of the singularity shell, thus (differen-
tially) keeping v on the shell and inducing no change in orientation. In other words, when v hits one of
these shells, it can differentially keep rotating in the direction it is already going, but in no other direc-
tion. Fortunately, for the applications of differential control and physical simulation, avoiding these sin-
gularities is easy, due to two facts.

First, if we consider just the RQ parameter space inside the first singularity shell, each unique orienta-
tion (except the rotation of zero radians) has two possible parameterizations: as a rotation of 0 radians
about v, and as a rotation of 2z - # radians about -+ (quaternions have a similar property, in that antipo-
des g and —g represent the same orientation).

Second, both control and simulation operate by moving forward through time in small steps, and the
possible change in DOFs during each step is small (much less than a radian for angular parameters).

Using these facts it is easy to avoid the singularity: at each time step when the rotation is queried for
its value and derivative, we examine ||, and if it is close to 2z, we reparameterize v by (1-2z/p))v, which
is an equivalent rotation, but with better derivatives. Such dynamic reparameterization could, in theory,
also be applied to avoiding gimbal lock in Euler angles, but whereas here the reparameterization simply
scales the current parameters, the corresponding operation on Euler angles involves switching the for-

mula used to compute the rotation matrix and a sequence of inverse trig functions to determine the new
parameters [6].

4 Applications

Now that we have seen how the RQ parameterization works and what its theoretical limitations are, it
is time to focus on the reason for its creation: the simplification of algorithms that use parameterized
rotations. Of the four applications we have discussed in this paper — control, simulation, optimization,
and interpolation — we believe RQ to be ideally suited to the tasks of differential control and dynamic
simulation. In the following sections we will explain why, and also discuss the complications that arise
in applying RQ to interpolation and optimization.

4.1 Differential Control and Dynamic Simulation

One of the motivating applications for this work is differential control, which enables direct manipula-
tion interfaces, inverse kinematics, and real-time control of robotic manipulators. To control the positions
and velocities of objects and end-effectors of kinematic assemblies, the only demands imposed by differen-
tial control are that the derivatives dR/dv be continuous and free from gimbal lock. Since control is only
performed at discrete instants in time, the simple dynamic reparameterization technique presented in
section 3.2.2 will assure that these demands are always met.

In dynamic simulation applications, we track not only an object’s instantaneous position and pose, but
also its linear and angular velocity. Linear velocity is stored as a 3-vector that represents the Cartesian
direction and magnitude of the velocity. Angular velocity is also represented as a 3-vector @, whose
meaning is nearly identical to that of an RQ vector, except that its magnitude ¢ represents the rate of
rotation about the axis rather than absolute orientation, as in RQ.

To update the position and orientation correctly as the simulation moves forward in time, we need, in
addition to the derivatives necessary for differential control, a formula for computing the time derivative
of the orientation given the current orientation and the instantaneous angular velocity. Baraff [1] derives
such a formula for a quaternion orientation:

G=%d-q
where & is the angular velocity vector ® extended with a zero scalar component to make a quaternion.

Since RQ does not possess an equivalent operation to quaternion multiplication, we cannot derive a
similar formula for v. However, since we can convert a quaternion into an RQ vector inside the first
singularity shell at 2r , we can form v in terms of ¢ like so:

v=V(g), Therefore v= %_Vq
q

V(g) involves one arctrig and one trig function, but when we take the derivative with respect to ¢ and
put the entire formula in terms of v, much simplification occurs. Appendix B gives a formula for v in
terms of vand o that contains roughly the same number and kind of operations that the quaternion
multiplication to compute ¢ would have required. Thus RQ can be used in place of quaternions for dy-
namic simulation with equivalent performance and reduction in code complexity.

We claim that RQ is, in fact, ideally suited to these tasks because, despite the small measure we must
take to avoid the singularity, implementation of RQ can be much cleaner than quaternions. Not only is
RQ modestly more efficient, since it requires only three DOFs rather than four and no explicit con-
straints, but it is also truly modular, in that no constraints or information need be propagated to code
segments outside the core RQ functions.

RQ Interpolation Vs. Spherical Bezier

25
2

15 /m %’%%
} v

05 o

v
NNV

-1.5 1
-2

= = = RQ(X)
wnmnmnnnn Spherical (X)
- = —RQ(Y)
Spherical (Y)

Figure 2: Comparison of interpolated rotations using RQ and spherical Beziers. Five orientations were spaced
evenly through four units of time, and the same tangent controls were used in both cases. In the above graph, the
“RQ” curves give the interpolated x, y, and z values resulting from Euclidean Bezier interpolation of the RQ pa-
rameters; the “Spherical” curves are the results of spherical Bezier interpolation on the unit 4-sphere, converted
back into RQ parameters.

4.2 Interpolation

The principal benefit of embedding a rotation in a Euclidean space is the possibility of using Euclidean
interpolants on sequences of orientations. Euler angles do not make effective use of Euclidean interpo-
lants because they ignore the interaction of rotation axes. Since RQ is based on the axis/angle model of
rotations, we can hope to do better.

However, the singularity shell (which is common to all implementations of the axis/angle model) causes
complications because the distance between similar orientations grows without bound as one approaches
the singularity. We can illustrate this as follows: let ¥ =27 -8 for some infinitesimal value of §. Then if
v, =[7,7,7] and v, =[-7,—7,—7] are two RQ orientations, we note that although they are extremely close to
each other in SO(3), being only 26 radians apart, interpolation in RQ space will rotate through nearly 4z
radians — probably not the desired behavior. Quaternions avoid this wraparound problem because inter-
polation on the surface of a sphere uses the same distance metric as SO(3), provided consecutive orienta-
tions are on the same side of the sphere (i.e. their dot product is positive).

Away from the singularity shell, however, the results of using corresponding Euclidean RQ interpolants
and non-Euclidean quaternion interpolants are indistinguishable. Figure 2 shows a comparison of the
interpolation of five key orientations using both spherical Beziers on quaternion representations of the
orientations [5] and regular, Euclidean Beziers on RQ representations. When the quaternions resulting
from the spherical Bezier interpolation are converted into RQ parameters, the two methods are observed
‘to correspond quite closely. The fact that we can achieve essentially identical results from interpolating
in Euclidean RQ space has two important consequences. First, we can produce natural looking interpola-
tions using any sufficiently smooth Euclidean interpolating curve, including the entire family of cubic
splines, all of which have efficiently computable closed forms. Second, these Euclidean interpolants have
fairly intuitive controls in RQ space; for instance, if we are using a hermite cubic interpolant and we want
an object to have greater spin about the y-axis as it is passing through one of the keys, we would simply
increase the y component of the tangent control vectors at that key.

-10.

So how can we achieve this performance in the face of the problem near the singularity? In the most
general case, when orientation keys are allowed to be arbitrarily far apart in parameter space, we can-
not. But if we stipulate that n consecutive keys be within one complete revolution of each other (where n
is the number of position keys necessary to define a spline segment — two for hermites and beziers, four
for b-splines), then we can dynamically reparameterize the members (along with tangent controls, if they
exist) of each individual segment as a group to ensure that none are near the singularity shell, and then
proceed with the interpolation. This fix prevents us from using cardinal and other, related splines that
cannot be broken up into segments. Also, to make sure the stipulation is met, we may need to insert
“hidden” keys in between the keys specified by the animator if the change in orientation between two
consecutive keys is more than one revolution. The need for this last measure is, at least, not exclusive to
RQ, since quaternions are incapable of encoding a difference in orientation of 4z or more between con-
secutive keys.

Finally, we note that in practice, this added complication is often not required. In character animation,
actors and objects seldom deviate from the canonical upright position by more than one revolution unless
they are in freefall.

4.3 Spacetime Optimization

In spacetime and other optimizations that operate over an entire animation simultaneously, DOF's are
not simply angles at one instant in time, but rather rotation-valued functions of time. For instance, the
function for a single angle might be a cubic spline defined over the animation time interval, in which case
the DOF's are the positions of the spline’s control points, and we need to compute derivatives of rotations
at various points in time (i.e. along the curve) with respect to these control points (simply several further
applications of the chain rule to our existing formulae).

Since these functions are essentially interpolating curves, we might think about dealing with the sin-
gularity in the same manner as for interpolation. However, we cannot reparameterize the functions
dynamically, because doing so will change the shape of the curves, potentially perturbing the optimiza-
tion out of the state-space well it is currently traversing. Therefore, unless the possible range of rotations
is less than 27 (which actually is true when solving for motion displacements rather than motions), we do
not recommend the RQ parameterization for spacetime optimizations involving three DOF rotations.

5 Ball-And-Socket Joints

The RQ parameterization can be even more useful for modeling other types of joints than freeform three
DOF rotations. Let us consider the type of ball-and-socket joint found at the shoulders and the hips. If
we were to map out the legal range of motion of these joints in configuration space using RQ or any other
parameterization, we would get a complex, non-regular hyper-surface. However, we can create a joint
that approximates the actual motion and limits of motion fairly well using the following scheme, illus-
trated in Figure 3.

We model the motion of, say, an arm, as a single DOF twist about the principal axis of the outstretched
arm, followed by a two DOF swing of the arm that incurs no twist about the arm’s axis. The last is impor-
tant because we wish to place limits on the allowable twist of the arm; this would be very difficult if both
rotations could generate twist, but since only the first rotation can twist, the limits can be easily enforced
with linear inequality constraints. As for creating suitable limits for the swing rotation, we will discuss
more accurate schemes later, but for now we will stipulate a maximum rotation in any direction, so that a
rigid arm will be able to sweep out a circular patch on the surface of a sphere.

-11-

Figure 3: Degrees of Freedom for Ball-And-Socket Joint. The “arm” pictured above uses the ball-and-socket
model proposed here at its shoulder joint. In the image on the left, the twist DOF is being exercised, and the arm
spins about its axis. On the right the two swing DOFs are used to make the hand swing out a circle, starting at the
bottom position and finishing closest to us. Note that in this entire motion there is no spin about the arm’s axis.

We claim that this is a good model of ball-and-socket joints because the amount of twist in such joints is
fairly independent of the swing angle, and the sweep limits, while never really circular, are often rather
ellipsoidal. Although we are constructing a single joint from a sequence of two rotations, there is no pos-
sibility of gimbal lock, since the axes of rotation are, by definition, mutually orthogonal.

The twist can be parameterized as either an Euler angle, if the principal axis for the limb happens to be
a coordinate axis, or as a single DOF RQ rotation, whose derivation is straightforward given the following
presentation of two DOF rotations. Parameterizing the twist-less swing rotation would be tricky using
Euler angles, but given an axis/angle model like RQ it is simple, since a necessary and sufficient condition
for a rotation that contains no spin about a specified vector is for the rotation axis to be orthogonal to the
vector.

This means that to achieve our desired two DOF rotation, all we need is an RQ rotation vector that lies
in the plane perpendicular to the major axis of the limb in its canonical (zero rotation) position. We could
do this with an explicit constraint, but we can more elegantly create such a rotation by reparameterizing
the RQ rotation itself like so: pick any two orthogonal, unit vectors in the perpendicular plane; these
vectors, s and ¢ become a 2D basis for our desired swing rotation v, an RQ vector that we compute like
s0:

v=as+ 0t

where ¢ and g are now the two DOFs, which we can form into a 2D RQ vector that we will call r. Now
since s and ¢ are unit vectors, the length of r is the magnitude of the swing rotation, So to place a limit
on the swing we need only place an inequality constraint on this vector’s magnitude:

A < timit
In fact, it is not much more difficult to impose a more accurate, ellipsoidal angular limit. If we know the

angular limits of rotation along the major and minor axes of the ellipse, ¢ and b, then we must choose s

and 7 to correspond to the major and minor axes in the plane, and pose the following inequality con-
straint instead of the one above:

-12 -

Since the two DOF rotation is formed from a reparameterization of the three DOF rotation, all the same
formulae apply, but now we are computing the 3D RQ vector v from the 2D RQ vector r. To compute the
derivatives of R with respect to r, we simply apply the chain rule once more:

JR _dR dq &

= where i=s and ?—v—=t
ar dg ovor ? ar,

This two DOF rotation is suitable for all the same applications as the three DOF, and additionally op-
timization. Recall that the three DOF rotation could not be used for optimization because dynamically
reparameterizing the control points to avoid the singularity shells was unacceptable. But the first shell
occurs at an angular magnitude of 27, and since the angular motion limits for the types of joints the two

DOF rotation models should always be much less than 2z, crossing any of the shells should never be a
problem.

“

6 Conclusion

We have presented a new parameterization of three and two DOF rotations. Although it is technically
not as robust as the straight quaternion parameterization, it performs well in practice. In practical terms
of flexibility, ease of interaction, and ease of integration into large systems, we have found RQ to outper-
form quaternions and all other parameterizations discussed here.

At the beginning of this paper, we stated three evaluation criteria by which any parameterization must
be judged. We will conclude by measuring RQ against them.

Accuracy in modeling motion. RQ is a faithful implementation of the axis/angle model of rotations. As
such it is both a complete representation of orientations, and easily extendible to various forms of re-
stricted rotations. We have demonstrated this by deriving a two DOF variant that is quite useful in
modeling a ball-and-socket joint.

Behavior. Since RQ possesses singularities in its parameter space, it will experience gimbal lock at
complete revolutions about any axis. We have shown, however, how this situation can be easily
avoided for most potential applications, excluding optimization. Derivative computation using RQ en-
tails chain rule evaluation, but we have provided code (discussed in Appendix C) that encapsulates
the computation efficiently.

Code Complexity. Using RQ has simplified our own code considerably over various strategies of using
quaternions. The “unclean” aspects of RQ (two sets of formulae for computing with it; the need for dy-
namic reparameterization) can be safely modularized and do not propagate beyond the rotation object.

Acknowledgements

Thanks to David Baraff for helpful discussions on singularities and computing v, to Matt Mason and
Mike Erdmann for providing a handle on the robotics knowledge base in this area, and to David Baraff,
Matt Mason, and Zoran Popovi¢ for critical reads of this paper.

-13-

Bibliography
L.

David Baraff. Rigid Body Simulation. In Andrew P. Witkin, organizer, Physically Based Modeling
Course Notes (SIGGRAPH ’95), pages G1-G68, July 1995.

Alan H. Barr and Bena Currin and Steven Gabriel and John F. Hughes. Smooth interpolation of
orientations with velocity constraints using quaternions. In Edwin E. Catmull, editor, Computer
Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 331-320, July 1992.

Michael Gleicher and Andrew Witkin. Through the Lens Camera Control In Edwin E. Catmull, edi-
tor, Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 331-340, July 1992.

Richard M. Murray and Zexiang Li and S. Shankar Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, Boca Raton, 1994, pages 22-34,73.

Ken Shoemake. Animating Rotations with Quaternion Curves. In Brian A. Barsky, editor, Computer
Graphics (SIGGRAPH °85 Proceedings), volume 19, pages 245-254, July 1985.

Ken Shoemake. Euler Angle Conversion. In Paul Heckbert, editor, Graphics Gems IV, Academic
Press, 1994, pages 222-229.

-14 -

Appendix A: Derivatives
As in section 3, let v be a 3-vector that RQ parameterizes a quaternion ¢=| ¢, 9, 9 9w] (where g¢,is

the scalar part), and 8= | =ﬂ,v,v, Yy vy,

Now also let i range over the three components of ¢ that make up its vector part, and let j range over
the components of v .

The formulae for computing the partial derivatives of ¢ with respect to v are, in the usual case where
0>>0:

1 in(* in(4
Wheni=j: % =4 o (’29) -v sm(239) +Sm(Z 9)
99, _ _,, SinG6) 1 6 6]
v, T] , 9q, cos(18) sin(4 9)
’ Wheni#j: ==t =4vy, 011 - vy, 923
I

In the limit as 0 — 0 and we use 'Hépital’s Rule to compute ¢, we use the following forms to compute
the partial derivatives:

Wheni=j: %=%cos(%9)
%2y _ —4v_cos(+6) !
ov; ’ .. dg,

Wheni# j: =*%=0

Appendix B: v(v,0)

Assume the same definitions as Appendix A.

In the normal case where 0 >> 0 (note that cot(46) = cos(36)/sin(46), and we should have already com-
puted both these functions):

Let P=VX® ¥ =6cot(+6) 11=-‘-:92(cot(-}9)—%)

Then v=+(-1mv+p)
In the limit as 8 — 0, the formula simplifies to: v=¢

Appendix C: Sample Code

Sample C source code for computing the rotation matrix R, its partial derivatives oR/dv , and v(v,®) for
the two and three DOF versions of RQ rotations can be found at http://www.cs.cmu.edu/~spiffirq. This
code can be used to start computing with RQ immediately, but as it stands, it is not very efficient. We
have purposely omitted the caching necessary to make the implementation efficient, because the form of
cache storage will depend on the modularization strategy.

In particular, the values theta, cosp, sinp, and the quaternion g should be cached and stored with
v when the rotation matrix is calculated from v, to be used later when calculating derivatives. Also, as
noted in the code, when computing the derivatives of the two DOF rotation, the intermediate derivatives
of g with respect to a three DOF RQ rotation should be computed only once and cached.

_15-

